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Abstract Extreme droughts and high temperatures have become more frequent in the last two decades,
increasing fire risk in the Amazon. The overarching goal of this study is to shed light on the influence of
temperature and rainfall on fire occurrence for the 1998–2013 period. We use a Poisson regression to
model satellite-based monthly fire counts across the Brazilian Amazon as a function of observed rainfall
and temperature. Specifically, in the nonlinear regression framework we explore the fire count at month
t as a function of the total monthly rainfall and monthly average of maximum daily temperatures at month
t as well as lagged observations of these two predictors and of the fire counts. Our results indicate that
the influence of temperature on fire counts can be larger than the effects of rainfall. Considering the
temperature-fire relationship, the extra variance explained by rainfall is about 9%. Assuming average
rainfall, we show that a 1∘C increase in the monthly average of maximum daily temperatures results in a
30% increase in fire counts (19 fires per Mha more than the average), which translates into significant
changes in the likelihood of fires within the Amazon. Our findings provide new insight about the role of
temperature and rainfall in regulating fire occurrence in the Amazon, and the sensitivity of fire counts
to relatively small changes in temperature highlights the vulnerability of the Amazon in a warming climate,
where much higher temperatures are expected by the end of this century.

1. Introduction

The Amazon is the most extensive tropical rainforest in the world, supporting a high level of biodiversity and
playing an essential role in global biosphere-atmosphere interactions. The dynamics of Amazon ecosystems
exert considerable influence on biogeochemical cycles (McClain et al., 2001), moisture transport (Drumond
et al., 2008), and regional climate of local and remote regions (Badger & Dirmeyer, 2016; Nobre et al., 1991).
Extreme droughts in the Amazon seem to have become more frequent since 1995 (Marengo & Espinoza, 2016),
and the drought magnitude has been positively associated with the number of active fires (Aragão et al., 2007;
Brown et al., 2006; Chen et al., 2011; Ray et al., 2005), which release significant amounts of greenhouse gases
and aerosols into the atmosphere (Artaxo et al., 2013; Cochrane, 2003; Gatti et al., 2014; Nepstad et al., 1999).
The exceptional droughts of 2005 and 2010, for instance, deeply affected the Brazilian economy and caused
an intensification of wild fires and associated impacts (Marengo et al., 2008, 2011; Phillips et al., 2009).

Droughts in the Amazon have been mainly associated with the El Niño–Southern Oscillation (ENSO) (Marengo
& Espinoza, 2016) and the sea surface temperature (SST) variability in the tropical north Atlantic (Yoon & Zeng,
2010). Warm SST anomalies in the eastern tropical Pacific shift the descending branch of the Walker circulation
over the Amazon and inhibit precipitation during the austral summer rainfall season (Ropelewski & Halpert,
1987; Sun et al., 2016). A warmer tropical north Atlantic will displace the Intertropical Convergence Zone to
the north from its climatological position and therefore the ascending branch of the Hadley cell, which in
turn reduce convection and precipitation over the Amazon. The fire season tends to occur between July and
November in the southern Amazon, with a peak in September (Chen et al., 2013). An increase in the number
of fires occurs during drought years (e.g., during 2005, 2007, and 2010). Statistical models have been devel-
oped to predict the fire season intensity in advance using SST anomalies in the tropical Atlantic and Pacific
(Chen et al., 2011; Fernandes et al., 2011) as predictors, since it is believed that they are key variables in driving
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rainfall anomalies in the region. Subsequent changes in terrestrial water storage influence transpiration and
surface humidity during the following dry season (Chen et al., 2013; de Linage et al., 2014).

Fire dynamics in the Amazon arise from a complex interaction of climate, vegetation, and people (Aragão
& Shimabukuro, 2010; Cochrane, 2003; Cochrane & Barber, 2009). Most fires in primary forest or disturbed
vegetation cover types (logged areas, pasture, and crop fields) result from anthropogenic ignition sources,
including intentionally ignited fires for forest clearing (deforestation), accidental fires, and those that escape
out of control from agriculture or pasture maintenance (Cochrane, 2003; Nepstad et al., 1999). Deforested
regions and pastures have also the potential to increase fire susceptibility in the Amazon and transform large
areas of tropical forest into savanna or grass-dominated vegetation (Cochrane et al., 1999; Golding & Betts,
2008; Laurance & Williamson, 2001; Nepstad et al., 1999; Ray et al., 2005; Uhl & Kauffman, 1990; Veldman &
Putz, 2011). Ecosystem composition regulates available fuels, with fire severity, intensity, and spread rate
determined by a complicated interplay between ecosystems and climate. Intact closed-canopy Amazon forest
provides a natural barrier for fire ignition and spread with high moisture content in the air and low radi-
ation near the ground. The atmospheric moisture conditions are regulated by climate and modulated by
ecosystems. During the wet season, groundwater is recharged by rainfall, supplying necessary water for the
deep-root trees during the following dry season (Nepstad et al., 1999). Hence, humidity levels remain high
during the dry season, which keeps the forest flammability relatively low during this period. In particular, the
thin fuel layer on the forest ground continues to remain in equilibrium with high levels of surface humidity
during the dry season. During severe droughts, the Amazon experiences an increase in the number of fires,
which has been attributed to an increase in the forest susceptibility to fires due to a decline in the deep soil
water storage and atmospheric moisture content in response to a persistent decrease in rainfall (Nepstad et al.,
1999; Ray et al., 2005).

Here our work is motivated by the idea that climate-driven fire risk is primarily controlled by the deep and near
surface soil water content, which in turn is driven by two main climate variables: rainfall, which directly replen-
ishes groundwater levels, and temperature, which affects the water vapor deficit and evaporative demand in
the atmosphere. Previous studies and fire models have linked the number of active fires to Amazon drought
events and, ultimately, to ENSO and other climate models that influence rainfall in the Amazon by means
of teleconnections (e.g., Alencar et al., 2006; Aragão et al., 2007; Brown et al., 2006; Cardoso et al., 2003;
Fernandes et al., 2011; Roman-Cuesta et al., 2014; Turco et al., 2017; van der Werf et al., 2008). Some fire models
(e.g., Nepstad et al., 1999, 2004; Silvestrini et al., 2011) take into account the effect of temperature indirectly
through estimation of evapotranspiration, atmospheric evaporative demand, or water vapor pressure deficit.
Several recent studies show that high temperatures exacerbate the effect of droughts (Aghakouchak et al.,
2014; Swain et al., 2014; Shukla et al., 2015), leading to compounding effects of extremes (e.g., drought-high
temperatures, Hao et al., 2013; Mazdiyasni & AghaKouchak, 2015). We therefore hypothesized that incorpora-
tion of the direct effects of temperature on the flammability of the Amazon forest deserves more attention. As
we show through our analysis, droughts in the Amazon, as characterized by below average seasonal rainfall,
are followed by a significant increase in the surface air temperature, which in turn could amplify the depletion
of the deep soil water content. This would thus increase the climate-driven fire risk across the Amazon by con-
tributing to ideal conditions for fire ignition and spread. Such scenarios of low rainfall and high temperatures
may become more common in a warming climate and considerably extend the fire risk in the Amazon beyond
existing projections (e.g., Cardoso et al., 2003; Liu et al., 2010; Silvestrini et al., 2011). Here we seek to improve
our understanding of Amazon fires by quantifying the separate roles of temperature and rainfall in regulating
the susceptibility of the Amazon forests to fire. We develop a nonhomogeneous, nonlinear Poisson regression
model for the active fires in the Brazilian Amazon as a function of concurrent and past values of observed daily
maximum temperature and rainfall. By evaluating the goodness of fit of different Poisson models as indicated
by the R2 measure, we explore the role of each of these variables in regulating forest flammability. After this
introduction, this paper is organized as follows. The proposed Poisson model is described in section 2. The data
are presented in section 3. Results are discussed in section 4, and finally, in section 5, we conclude by providing
a summary of the main findings of this work.

2. Data

Satellite active fire observations for the Brazilian states within the Amazon region (Amazonas, Pará, Acre,
Rondônia and Mato Grosso) are provided by the Brazilian National Institute of Space Research (INPE) Fire
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Figure 1. Grid domain (dashed line) of temperature and rainfall data
over the Amazon watershed (blue line). The different land cover types
follow the definition of NASA land cover maps available at http://
eoimages.gsfc.nasa.gov/images/news/NasaNews/ReleaseImages/LCC/.
The red line shows the political boundaries of the Brazilian federated
states: Acre (AC), Amazonas (AM), Mato Grosso (MT), Pará (PA) and
Rondônia (RO).

Monitoring Project. The data cover the period from June 1998 to May 2016
and can be obtained from http://www.inpe.br/queimadas/estatistica_estados.
For the period June/1998 to June/2002 these fire data are based on NOAA-12
satellite, while from July/2002 through May/2016 fire observations are based
on the AQUA satellite data. The difference between the NOAA-12 and AQUA
satellite sensors were adjusted for by INPE in the fire product in order to keep
a continuous pattern of fire detection and allow inferences on spatial and
temporal trends in fire counts.

Monthly gridded (0.25∘ × 0.25∘) temperature and rainfall data for the period
1980–2013 are provided by Xavier et al. (2016). These data consist of inter-
polated, daily rainfall and maximum daily temperature observations from
3,625 rainfall gauges and 735 weather stations across Brazil available from
the National Institute of Meteorology, the National Water Agency, and the
Department of Water and Electrical Energy of Sao Paulo. The interpolation
schemes and validation procedures are described in Xavier et al. (2016). The
geographical region delimited by the data set is shown in Figure 1. Here we
use monthly values of rainfall and temperature that constitute, respectively,
the sum of daily rainfall and the average of the maximum daily temperatures
over each respective month. To avoid excessive noise in the data, we use
the spatial average rainfall and temperature over the Amazon grid defined in
Figure 1.

3. Methods
3.1. The Locfit Poisson Regression Model
Let us assume a variable Yt that represents the number of active fires in the Brazilian Amazon (in the entire
region or for a specific state) for month t. A common approach is to assume that Yt follows a nonhomogeneous
Poisson distribution with time varying rate 𝜆t

Yt ∼ Pois(𝜆t), (1)

where

Pr(Yt = k|𝜆t) =
e−𝜆t𝜆k

t

k!
. (2)

The rate 𝜆t can be modeled as a function of predictors indexed by time t under the generalized linear model
framework (McCullagh & Nelder, 1989):

log(𝜆t) = 𝛼0 + 𝛼1 ⋅ Pt + 𝛼2 ⋅ Tt, (3)

where we adopt the canonical link function for 𝜆t , and Pt and Tt are the precipitation and temperature for
month t, respectively.

In order to account for the fire counts relative to the area of the Amazon (or the respective states), we add the
area A (in Mha) as an exposure (or offset) input, so that we essentially model the rate 𝜆t

A
as a function of the

covariates:

log(𝜆t) = log(A) + 𝛼0 + 𝛼1 ⋅ Pt + 𝛼2 ⋅ Tt. (4)

Note that under this model, 𝜆t (or more precisely 𝜆t

A
) changes exponentially as a function of Pt and Tt . In order

to allow more complex relationships, we assume here a local regression model (locfit, see Loader, 1999 for
more details) for log(𝜆t)

log(𝜆t) = f (log(A) , Pt , Tt), (5)

with f (⋅)being a smooth, polynomial function (linear or quadratic) fitted within a sliding window. For instance,
a local linear model around a point X = (P, T) can be written as

log(𝜆t) ≈ log(A) + a0 + a1 ⋅ (Pt − P) + a2 ⋅ (Tt − T), (6)
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where the coefficients a0, a1, a2 are estimated, for each fitting point X = (P, T), using the weighted least
squares

n∑
t=1

W

(‖Xt − X‖
h

)(
log(𝜆t) − (log(A) + a0 + a1 ⋅ (Pt − P) + a2 ⋅ (Tt − T))

)2
, (7)

with h being the bandwidth (i.e., smoothing parameter), ‖⋅‖ the Euclidean norm, n the total number of
observations, and W the tricube weighting function:

W(u) =
{

(1 − |u|3)3, |u| < 1
0, otherwise.

(8)

More details can be seen in Loader (1999). The term log(A) remains as an offset in the model, and hereafter, we
refer to this model with predictors Pt and Tt as the benchmark model. Subsequently, past values of observed
fire counts (yt−1 , yt−2, etc.), rainfall, and temperatures will also be added to the model for further evaluation.

We use the freely available R package locfit (Loader, 2013) for model fitting. We set the default values
(as provided by the locfit package) for the model parameters: 𝛼=0.7 (nearest neighbor fraction, which gives
a bandwidth covering 70% of the data), deg=2 (degree of local polynomial), and the tricube weight function.
We have used the same set of parameters across all models so that the models can be evaluated against each
other (see section 4).

The Poisson model presented in equation (1) has the property that the expected value of Yt (E(Yt) = 𝜆t) is
equal to its variance Var(Yt). However, very often this is not the case and the variance of Yt can be greater than
its mean, which is known as overdispersion. Model (1) can still be used to estimate the expected number of
fire counts E(Yt), but its variance can be severely underestimated. In this work we handle overdispersed data
by assuming a quasi-likelihood model (Loader, 2013), in which the only change relative to the corresponding
likelihood model will be in estimating the variance Var(Yt):

Var(Yt) = 𝜎2 ⋅ 𝜆t, (9)

with 𝜎2 being the dispersion parameter. We refer the reader to Loader (2013) for the exact formulation to
estimate 𝜎2 after fitting the Poisson model (equations (1) and (5).

3.2. Model Diagnostic and the Pseudo R2 Measure for Poisson Regression
A common metric for diagnostic and comparison in generalized linear models is the deviance (McCullagh &
Nelder, 1989), which can be defined for a single observation yt as

dt(yt, 𝜆t) = 2 ⋅
(

sup
𝜆

l(yt, 𝜆) − l(yt, 𝜆t)
)
, (10)

where l(yt, 𝜆t) is the log likelihood of the fitted model for observation yt and sup𝜆 l(yt, 𝜆) is the maximum
log likelihood achievable in a full model with the number of parameters being equal to the number of
observations. Hence, the deviance provides a measure of the difference between the maximum log likelihood
achievable (i.e., a model that is a perfect fit to the data) and the log likelihood of the model under investigation.

The total deviance is given by the sum of dt over all observations yt , t = 1,… , n:

D =
n∑

t=1

dt(yt, 𝜆t) =
n∑

t=1

2 ⋅
(

sup
𝜆

l(yt, 𝜆) − l(yt, 𝜆t)
)
. (11)

For the Poisson model adopted in this work, the total deviance is given by

D = 2
n∑

t=1

[
yt log

(
yt

𝜆t

)
− (yt − 𝜆t)

]
. (12)

Since we use the deviance statistic D as a measure of model discrepancy, the fitting diagnostic will be carried
out by analyzing the deviance residuals (McCullagh & Nelder, 1989):

rt = sign(yt − 𝜆t)
√

dt, (13)
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so that

n∑
t=1

r2
t = D. (14)

The goodness-of-fit analysis done in this work (not shown here) follows the procedures as recommended for
standard linear regression models (QQ-plot, residuals versus predictor variables, serial plots, etc). However,
the coefficient of determination R2 as used in linear regression cannot be directly extended to the Poisson
regression model, since residuals are no more homoscedastic. We use then the deviance D in equation (12) as
a measure of goodness of fit for a given model and define the pseudo R2 measure as

R2 = 1 − D
Dnull

, (15)

with Dnull being the deviance of the Poisson regression model (i.e., null model) with just the offset and the
intercept term 𝛼0 in equation (4), so that the predicted mean is

𝜆t =
1
n

n∑
t=1

yt = ȳ , (16)

and Dnull becomes

Dnull = 2
n∑

t=1

[
yt log

(
yt

ȳ

)
− (yt − ȳ)

]
= 2

n∑
t=1

[
yt log

(
yt

ȳ

)]
. (17)

The pseudo R2 measure can be viewed then as the gain in explained deviance by the proposed model over
the null model with just an intercept term. R2 ranges from 0 to 1, with 1 being a perfect fit. Cameron and
Windmeijer (1996) present a comparison of different R2 measures for Poisson regression models and suggest
the use of R2 based on the deviance residuals as adopted here.

The role of temperature and rainfall at month t on the same month fire (yt) count across the Amazon will be
explored here by analyzing changes in the R2 measure as the deviance D in equation (15) varies by including
and removing these predictors in equation (5). The effect of past temperature, rainfall, and fire count (e.g., yt−1)
will be assessed in a similar manner, but the predictors in equation (5) will be past values, such as Tt−1 and Pt−1.

Finally, the conditional effect of past temperature and rainfall on the fire count at time t given the concurrent
observations of rainfall Pt and temperature Tt will also be evaluated by replacing Dnull with Dbench. The latter is
calculated for the benchmark model in equation (5), which includes only Pt or Tt as predictors, with D adding
an additional lagged variable (P, T , or the past fire count y) to the benchmark model. For instance, if we want
to evaluate the conditional effect of the rainfall lagged by 3 months on the fire count at time t given that we
know the rainfall and temperature at time t, we will look at the R2 measure

R2 = 1 −
Dp3

Dbench
, (18)

where Dp3 is the deviance estimated by the locfit Poisson regression model considering the predictors
(Pt , Tt , Pt−3), and Dbench is the deviance estimated for the benchmark Poisson model with predictors (Pt , Tt).

Note that Yt and A in equations (4) and (5) will change according to the state. For the entire Brazilian Amazon
model, they will be the sum of the respective variables across the states Amazonas, Pará, Mato Grosso, Acre,
and Rondônia. On the other hand, the predictors (Pt , Tt , etc.) are spatial averages over the Amazon region
and thus change only over time, remaining the same as the model changes across states.

4. Results
4.1. Exploratory Analysis of Temperature and Rainfall Time Series
The observed series of monthly temperature (average of maximum daily temperatures over the respective
month) averaged over the Amazon region as defined in Figure 1 displays a remarkable increasing trend
(Figure 2a) of 0.03∘C per year. The Mann-Kendall trend test rejects the null hypothesis of no monotonic trend in
the temperature data (p value< 2.2⋅10−16). On the other hand, the monthly rainfall series (Figure 2b) does not
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Figure 2. (a) Time series of spatially average temperature and (b) rainfall over the Amazon region as defined in Figure 1.
Seasonal cycle of spatially average (c) temperature and (d) rainfall. Autocorrelation function of spatially average
(e) temperature and (f ) rainfall. The red line shows an ordinary linear regression fit to the data.

show any evidence of a significant trend in the last 30 years (Mann-Kendall test p value = 0.93). These results
are consistent with previous studies (Malhi & Wright, 2004) that found no trend in rainfall over the Amazon.
However, averaging rainfall across the grid points may have smoothed an apparent dipole trend of increasing/
decreasing rainfall in the northern/southern Amazon detected in other studies (Debortoli et al., 2015; Rao
et al., 2016). It is also worth mentioning that other studies (Fernandes et al., 2015; Gloor et al., 2015; Malhi
& Wright, 2004) have also provided evidence of multidecadal variability in rainfall and temperature over the
Amazon. For instance, temperature across the Amazon in the 1970s was cooler than previous decades, while
the annual mean precipitation was generally higher than previous decades, coinciding with specific pat-
terns in the SSTs at the Atlantic and Pacific Oceans as well as changes in the phase of the Pacific Decadal
Oscillation. Such multidecadal changes may impact short-term, monotonic trends. Therefore, multidecadal
and low-frequency variability should be considered when interpreting precipitation and temperature trends.

Both temperature and rainfall present a well-defined seasonal cycle (Figures 2c and 2d), but they are out
of phase, with maximum (minimum) temperature in September (February) while the rainfall has its maxi-
mum (minimum) in March (August). The autocorrelation function (Figures 2e and 2f) shows a persistence
of 2 months for both temperature and rainfall and peaks at around multiples of 6 months that reflect the
well-defined seasonal cycle.

Monthly temperature and rainfall are strongly correlated (Figure 3a), with a Pearson correlation coefficient of
−0.58. The null hypothesis of no linear relation between the two variables is rejected at the 5% significance
level (p value < 2.2 ⋅ 10−16). In order to verify whether such relationship is driven by the seasonal cycle of
rainfall and temperature, we remove from the original series the monthly mean values and obtain anomalies.
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Figure 3. Scatterplot of temperature versus rainfall for the (a) raw data and for (b) anomalies obtained after removing
the seasonal cycle. The red line shows an ordinary linear regression fit to the data. Correlation (cross-correlation
function) of temperature (t + 𝜏) and rainfall (t) for the (c) raw data and for (d) anomalies obtained after removing
the seasonal cycle.

The scatterplot of temperature versus rainfall after removing the seasonal cycle is shown in Figure 3b. The
relationship remains strong, with a Pearson correlation coefficient of −0.38 and the null hypothesis is again
rejected (p value = 1.423 ⋅ 10−15).

At monthly scale, there is no evidence that the positive anomalies in temperature are a response of the vegeta-
tion to negative anomalies in rainfall or that positive temperature anomalies lead to a reduction in the Amazon
rainfall. In fact, the cross-correlation function (Figures 3c and 3d) shows the out-of-phase seasonal cycle of
rainfall and temperature in the raw data (Figure 3c) and a correlation between anomalies that peaks at lag zero
(Figure 3d), possibly due to the short wave radiative effect of low cloudiness on the surface energy balance
and consequently on the surface temperature. This suggests that both anomalies in rainfall and temperature
are driven by the same mechanisms.

4.2. Exploratory Analysis of Fire Counts, Rainfall, and Temperature
The annual series of active fires (sum of monthly values and per Mha) for the Brazilian states within the Amazon
region is displayed in Figure 4a. The period 1999–2005 is characterized by higher fire count than the later
period, particularly for the states of Mato Grosso and Rondônia, which are by far the states with the largest
number of fires. This is consistent with other studies (Chen et al., 2013) that found an increase in the number of
active fires during the 2001–2005 period and attributed it mainly to deforestation. The seasonal cycle of fire
count (Figure 4b) resembles the cycle of temperature, with a peak in August–September. This study ultimately
seeks to better understand the reason for the fire count peak in August–September: is it due to the low rainfall,
high temperatures, or both? if the latter, what is the role of each variable?

The scatterplot of the relationships between active fires over the Brazilian Amazon (sum of the fire counts
of Amazonas, Mato Grosso, Rondônia, Para, and Acre states) and temperature and rainfall averaged over the
grid defined above is displayed in Figure 5. A strong nonlinear relationship with fire counts can be observed
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for both variables. The Pearson correlation coefficients are 0.74 and −0.63,
respectively, for temperature and precipitation. Both values are statistically
significant at the 5% significance level (p value <2.2 ⋅ 10−16). The Spearman
correlation coefficients, which are more appropriate for measuring the mag-
nitude of nonlinear relationships, are 0.78 and −0.81, respectively.

4.3. Poisson Modeling
The response of monthly fire count (per Mha) across the Brazilian Amazon for
concurrent variations in temperature and rainfall as predicted by the bench-
mark model proposed above (equation (5)) is shown in Figure 6. The model is
fit considering the 1998–2013 overlapping period of predictors (rainfall and
temperature) and the response variable (fire count). A well-defined boundary
for temperature below around 31.5∘C and for rainfall above 220 mm/month
defines a region in which the fire count is less than nine active fires per Mha.
For rainfall less than 150 mm/month, the temperature plays a more signif-
icant role, since contour lines are closer to horizontal lines, where rainfall
has no effect. The number of fires increases considerably for temperature
above 34∘C and rainfall below 100 mm/month. The results individualized by
states have similar patterns (not shown here). The Poisson R2 measure for this
model as defined in equation (15) is 0.7865, meaning that the model that
incorporates the concurrent temperature and rainfall explains around 78% of
the deviance of a model based solely on the mean value of the fire counts
(null model). Despite the relatively high correlation between rainfall and tem-

perature (Figure 3), the variance inflation factor (see Fox, 2008) for the benchmark model is 1.63, indicating
only moderate levels of multicollinearity.

The expected fire rates as predicted by the benchmark model in Figure (6) can be easily converted into condi-
tional probabilities for the active fire counts, leading to a better interpretation of the impacts of temperature
on fires after accounting for rainfall. For instance, Figure 7 shows prediction of the expected fire count as a
function of temperature above the September average value (33.9∘C) and conditional on a fixed rainfall equal
to the average value for September (104 mm/month), which is the peak season for fires (Figure 4). The relation
is close to linear, and we observe that within the range of historical, average daily maximum temperatures
for September (33.9∘C–34.8∘C), there is an increase in the predicted rate from 57 to 73 fires (per Mha), which
is about 19 fires (per Mha) per degree Celsius increase in temperature. The changes in the likelihood of fires
associated with the changes in the expected fire count are illustrated in Figure 7 (right). A remarkable shift in
the exceedance probabilities can be seen in response to changes in temperature. For example, the probability
of active fires to exceed the median number for September (55) goes from 57% for T= 33.9∘C to 98% for
T =34.8∘C.
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Figure 5. Relation of monthly fire count (per Mha) over the Amazon and
(left) temperature and (right) rainfall.

The Poisson R2 measure for different model combinations, including the past
month fire count, is shown in Table 1 for the entire Amazon and for each
one of the states. Considering the concurrent variables, the temperature leads
to higher R2 values for the whole Amazon and all states but Mato Grosso.
The temperature has the largest effect on fire counts for the states of Para,
Acre, and Rondônia. After accounting for rainfall, temperature (comparison of
model Pt Tt with model Pt) raises the R2 measure by values between 8% and
30%. On the other hand, the effect of rainfall after accounting for tempera-
ture (comparison of model Pt Tt with model Tt) has a minor role, increasing
less than 10% for all states but Mato Grosso, where it adds 21% for R2.

The previous month fire count, which could be an indicative of fuel moisture
status, plays also a significant role on explaining the fire counts. Alone (model
Ft−1), it explains around 55%–65% of the data deviance. After accounting for
the previous fire count, the role of temperature (compare models Tt Ft−1, and
Ft−1) diminishes when compared with the role of rainfall (compare models
Pt Ft−1, and Ft−1). The temperature in this case raises R2 by 6%–30%, while rain-
fall increases by 20%–35%. This may reflect the greater effect of temperature
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Figure 6. Predictions of average monthly fire count (per Mha) over the
Brazilian Amazon as a function of monthly temperature (average of daily
maximum) and total rainfall. The black dots show observed values.

on fire count and the persistence of temperature, since Ft−1 is highly corre-
lated with the concurrent temperature (Tt−1) and there is a high persistence
of temperature (high correlation of Tt−1 and Tt), so that by adding Ft−1 in the
model we basically remove the marginal gains obtained by including Tt in
the model. The three variables together explain over 88% of the fire count
variability.

4.4. Effect of Past Temperature, Rainfall, and Fire Count
The effect of past temperature, rainfall, and fire count on the current active
fires is evaluated by analyzing the R2 (equation (15)) measure as estimated by
adding past values of each one of these variables to the null model, which
contains only the intercept term. The results are shown in Figure 8 (blue bars).
All three covariates lead to models with considerable values of R2, with a gen-
eral tendency of smaller values between the lags of 3–4 months and values
as high as 60% for lag times between 5 and 6 months.

The conditional effect of past temperature, rainfall, and fire count is evaluated
by the R2 measure (equation (18)) estimated by adding past values of these
variables to the benchmark model, which now has temperature Tt and rainfall
Pt as predictors. After accounting for the concurrent temperature and rainfall,

the marginal gain in extra deviance explained by past values is drastically reduced for all three variables
(red bars in Figure 8) when compared with the marginal gains obtained by adding these variables to the null
model (blue bars in Figure 8). The marginal gain is less than 10% for rainfall and temperature and 14% for the
fire count at lag equal to 1 month. Similar results are obtained for each state individually (not shown here).

5. Summary and Conclusions

The active fire counts in the Brazilian Amazon were modeled in this work as a function of maximum daily tem-
perature and daily rainfall. A Poisson regression model was used to model the expected frequency of monthly
fire count in the Brazilian Amazon as a function of the average (over months) maximum daily temperature
and monthly total rainfall depth. Both predictor variables were spatially averaged over the Amazon region.
A local regression model (locfit) was employed to allow nonlinearities between the mean response (after the
appropriate transformation through the link function) and the covariates. The model was fit to the fire count
series for each Brazilian state within the Amazon (Acre, Amazonas, Mato Grosso, Pará, and Rondônia) as well
as to the aggregate values for the entire region.
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Figure 7. (left) Expected monthly fire count for the Brazilian Amazon
(in Mha) as predicted by the benchmark model for the average rainfall
of September (104 mm/month). (right) Exceedance probabilities
obtained from a Poisson distribution with average fire rates as predicted
in Figure 7 (left) for three different values of temperature: 33.9∘C
(blue line), 34.3∘C (black line), and 34.8∘C (red line).

A significant, increasing monotonic trend was observed for the maximum
daily temperature, with no correspondent trend in rainfall. Both variables
are strongly negatively correlated when we analyzed the raw data as well as
anomalies after removing the seasonal cycle. The correlation peaks at zero lag,
suggesting that years of low rainfall are accompanied by high temperatures
due to the same causing mechanism rather than regional feedbacks from the
vegetation in response to the low rainfall. The time of the year of the lowest
rainfall and highest temperature (August–September) coincides with the fire
peak season.

When modeling the fire count over the whole Amazon as a function of the
concurrent temperature and rainfall, we observed that the fire counts are rela-
tively low (less than 9 per month per Mha) for temperatures below 31.5∘ C and
rainfall above 220 mm/month. The number increases for temperatures above
and rainfalls below these threshold values. Considering the average rainfall
for September (fire peak month), the model suggests that for a 1∘C increase
in the monthly average of maximum daily temperatures, the number of fire
counts increases by 19 fires per Mha (or 30% above the average value of 64
actives fires per Mha for September). Such changes in the expected number
of active fires yield major changes in the likelihood of fires as seen in the
exceedance probability curves. The sensitivity of fire counts to a 1∘C increase
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Table 1
R2 Measure (in Percent) for Different Poisson Regression Models for the Fire Counts in the Amazon

Region

Model The entire Amazon Amazonas Mato Grosso Rondônia Para Acre

Pt 61.1 51.8 63.8 57.8 44.3 53.4

Tt 71.4 68.6 50.7 74.6 71.9 70.6

Ft−1 60.1 54.3 65.2 62.8 55.5 58.4

Pt Tt 78.6 73.7 71.1 83.1 74.9 79.3

Pt Ft−1 90.5 89.8 85.4 92.7 87.2 92.7

Tt Ft−1 78.9 76.6 71.2 81.7 84.4 80.1

Pt Tt Ft−1 92.5 91.2 88.5 93.9 88.6 93.0

in temperatures highlights the vulnerability of the Amazon region in a warming climate where much higher
temperatures are expected by the end of this century.

The Poisson model results indicate a strong role of temperature on fire counts in the Amazon, which has not
been fully explored in the literature. About 68% of the deviance in fire counts is explained by the concur-
rent temperature-fire information (here, temperature refers to the monthly average of the daily maximum
temperatures). This finding holds for all states but Mato Grosso. The concurrent rainfall-fire count informa-
tion explains on average 55% of the fire count deviance and can be as low as 44% for the state of Pará. After
accounting for the temperature-fire relationship, rainfall explains additional 9% of the fire count deviance
whereas, after accounting for rainfall-fire relationship, temperature explains additional 21% of the fire count
deviance. This provides evidence for a stronger control on active fires by temperature than precipitation.
The fire count of previous month, which may be a proxy for fuel moisture content, also has a significant
role and explains, on average, additional 19% of the fire count deviance after considering the concurrent
temperature-rainfall information. Together, all these three variables explain on average 91% of the fire count
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Figure 8. R2 measure estimated by adding the past variables (left) temperature, (middle) rainfall, and (right) fire count to
the null model (blue bars) and to the benchmark model (red bars).
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variability. More generally, as a consequence of the high correlation of rainfall and temperature, around 55%
of the fire count deviance can be explained by either rainfall or temperature or the combination of these
variables, although the individual effects cannot be distinguished under the model proposed in this work.

Antecedent rainfall and temperature seem to play a minor direct influence on the fire count data relative
to concurrent rainfall-temperature-fire information. After accounting for the concurrent values of rainfall-
temperature, the effect of antecedent rainfall and temperature as per the R2 measure drops significantly. This
suggests that the major impacts of rainfall and temperature on the fire counts through direct (through rainfall)
and indirect effects (through evapotranspiration) on the deep soil water content and relative humidity are
limited to 1 to 3 months ahead. Strong correlations found between fire count data and antecedent (beyond
4 months lag times) rainfall and temperature might be more related to the temporal persistence of rainfall
and temperature rather than any direct effect of them on the forest flammability. The previous time series
history of active fires was also found to play a major role, possibly because it could be a proxy for the deep soil
water content of previous month and consequently act as an almost independent predictor for the relative
humidity and fire count of the following month.

Finally, these results indicate that the impact of temperature on the Amazon flammability can be at least as
significant as (but probably greater) that of rainfall, especially at short time scale (1–3 months). As a result, the
effects of global warming on Amazon fires may be stronger than what has been estimated in previous studies.
There is less uncertainty in the projected increase in the temperature over the Amazon when compared with
the uncertainties in future rainfall. Historical data show no trend in rainfall, at least when spatially averaged
across the region, and if this scenario persists in the future, then the number of fires should increase signifi-
cantly due to the overpressure on the deep groundwater caused by an increasing evaporation in response to
higher temperatures and no corresponding increase in rainfall.
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